Influencia del Anticiclón del Atlántico Norte en la pluviosidad de la brisa marina en Carolina del Norte, Estados Unidos

Nicholas T. Luchetti, Rosana Nieto Ferreira, Thomas M. Rickenbach, Mark R. Nissenbaum, Joel D. McAuliffe

Resumen

La brisa marina (BM) es una importante fuente de precipitación de verano en Carolina del Norte (NC en su sigla en inglés), sudeste de Estados Unidos. Sin embargo, no todos los eventos de BM producen precipitación. En este trabajo se utiliza una climatología de eventos de BM lluviosos y secos en NC para investigar las condiciones que conducen a la precipitación.
Se utilizaron imágenes de radar para detectar 88 eventos de BM ocurridos a lo largo de la costa NC entre mayo y septiembre de 2009 a 2012. La mayoría (85%) de los eventos de BM ocurrieron durante períodos de viento hacia el mar (53%) o viento paralelo a la costa (22%). Los eventos BM se separaron en eventos secos (53%) y lluviosos (47%) y se analizaron las diferencias en los parámetros dinámicos y termodinámicos del entorno en el que se formaron. Se encontraron diferencias significativas en las condiciones dinámicas y termodinámicas. Eventos de BM secos ocurrieron bajo vientos más fuertes (6,00 ± 2,36 ms-1) que los eventos de BM lluviosos (4,02 ± 2,16 ms-1). Las BM lluviosas ocurrieron bajo valores de energía potencial convectiva disponible más altos y valores del parámetro de inhibición convectiva más bajos, condiciones que favorecen la lluvia. En general, los eventos de BM lluviosos representaron el 20-30% de la precipitación a lo largo de la región costera de NC de mayo a septiembre. La posición de la Alta Subtropical del Atlántico Norte (ASAN) controla la disponibilidad de humedad y los vientos a lo largo de la costa de NC, proporcionando así un mecanismo de control de escala sinóptica para la precipitación de la BM. En particular, cuando la cresta occidental de la ASAN se localiza a lo largo de la costa sureste de los Estados Unidos, se produce un flujo de sudoeste húmedo a lo largo de la costa NC que puede favorecer la ocurrencia de eventos de BM lluviosos.

Palabras clave

Brisa marina; lluvia; Carolina del Norte; alta Subtropical del Atlántico Norte; vientos de escala sinóptica.

Referencias

Adams, E. (1997). Four ways to win the sea breeze game, Sailing World, March, 44-49.

Arritt, R. W. (1993). Effects of the large-scale flow on characteristic features of the sea breeze. Journal of Applied Meteorology, 32(1), 116-125. https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2

Atkins, N. T. & Wakimoto, R. M. (1997). Influence of the synoptic-scale flow on sea breezes observed during CaPE. Monthly Weather Review, 125(9), 2112-2130. https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2

Atlas, D. (1960). Radar detection of the sea breeze. J. Meteorology, 17, 244-258. https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2

Azorin-Molina, C. & Chen, D. (2009). A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theoretical and Applied Climatology, 96(3-4), 249-260. https://doi.org/10.1007/s00704-008-0028-2

Azorin-Molina, C., Tijm, S., Ebert, E. E., Vicente-Serrano, S.M. & Estrela M.J. (2015) High Resolution HIRLAM Simulations of the Role of Low-Level Sea-Breeze Convergence in Initiating Deep Moist Convection in the Eastern Iberian Peninsula. Boundary Layer Meteor. 154(1), 81-100. https://doi.org/10.1007/s10546-014-9961-z

Banta, R. M., Olivier, L. D. & Levinson, D. H. (1993). Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. Journal of the Atmospheric Sciences, 50(24), 3959-3982. https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2

Bechtold, P., Pinty, J. P. & Mascart, F. (1991). A numerical investigation of the influence of large-scale winds on sea-breeze-and inland-breeze-type circulations. Journal of Applied Meteorology, 30(9), 1268-1279. https://doi.org/10.1175/1520-0450(1991)030<1268:ANIOTI>2.0.CO;2

Boyles, R. (2006). Investigation of Mesoscale Precipitation Processes in the Carolinas Using a Radar- based Climatology. Doctoral Dissertation, Department of Marine, Earth and Atmospheric Sciences, North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3895

Carlson, G. S. (2009). Spatial and temporal patterns of summer season precipitation across the Carolina coastal region (Doctoral dissertation, The University of North Carolina, Chaper Hill).

Crosman, E. T. & Horel, J. D. (2010). Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorology, 137(1), 1-29. https://doi.org/10.1007/s10546-010-9517-9

Curtis, S. (2006). Developing a Climatology of the South’s ‘Other’ Storm Season: ENSO Impacts on Winter Extratropical Cyclogenesis. Southeastern Geographer, 46(2), 2006, 231-244. Project MUSE. https://doi.org/10.1353/sgo.2006.0021

Diem, J. (2006). Synoptic-scale controls of summer precipitation in the Southeastern United States. Journal of Climate, 19, 613-621. https://doi.org/10.1175/JCLI3645.1

Estoque, M.A. (1962). The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244-250. https://doi.org/10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2

Frysinger, J. A., Lindner, B. L. & Brueske, S. L. (2003). Statistical Sea-Breeze Prediction Algorithm for Charleston, South Carolina, Wea. Forecasting, 18, 614-625. https://doi.org/10.1175/1520-0434(2003)018<0614:ASSPAF>2.0.CO;2

Fuhrmann, C. M., Konrad, C. E., Kovach, M. M. & Perkins, D. J. (2011). The August 2007 heat wave in North Carolina: Meteorological factors and local variability. Physical Geography, 32(3), 217-240. http://www.tandfonline.com/doi/abs/10.2747/0272-3646.32.3.217

Gilliam, R. C., Raman, S. & Niyogi, D. D. S. (2004). Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Boundary-Layer Meteor., 111(2), 275-300. https://doi.org/10.1023/B:BOUN.0000016494.99539.5a

Gil Olcina, A. & Olcina Cantos, J. (2017). Tratado de climatología. Instituto Interuniversitario de Geografía, Publicacions Universitat D’Alacant.

Helmis, C. G., Papadopoulos, K. H., Kalogiros, J. A., Soilemes, A. T., & Asimakopoulos, D. N. (1995). Influence of background flow on evolution of Saronic Gulf sea breeze. Atmospheric Environment, 29(24), 3689-3701. https://doi.org/10.1016/1352-2310(95)00008-M

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., (…) & Wolff, D. B. (2007). The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor. 8(1): 38-55. https://doi.org/10.1007/978-90-481-2915-7_1

Hughes, C. (2011). The climatology of the Delaware Bay/sea breeze. (Masters of Science Thesis, University of Delaware).

Jacobs, N. A., Lackmann, G. M. & Raman, S. (2005). The combined effects of Gulf stream-induced baroclinicity and upper-level vorticity on U.S. East Coast extratropical cyclogenesis. Mon. Weather Rev., 133, 2494-2501. https://doi.org/10.1175/MWR2969.1

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., (…) & Joseph D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77: 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kingsmill, D. E. (1995). Convection initiation associated with a sea-breeze front, a gust front and their collision. Mon. Wea. Rev., 123, 2913-2933. https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2

Koch, S. E. & Ray, C. A. (1997). Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12(1), 56-77. https://doi.org/10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2

Larson, J., Zhou, Y. & Higgins, R. W. (2005). Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 1247-1262. https://doi.org/10.1175/JCLI3317.1

Li, W., Li, L., Fu, R., Deng, Y. & Wang, H. (2011). Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24(5), 1499-1506. https://doi.org/10.1175/2010JCLI3829.1

Li, L., Li, W. & Kushnir, Y. (2012). Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dynamics, 39(6), 1401-1412. https://doi.org/10.1007/s00382-011-1214-y

Lyons, W. A. & Olsson, L. E. (1973). Detailed Mesometeorological Studies of Air Pollution Dispersion in the Chicago Lake Breeze. Mon. Wea. Rev., 101(5), 387-403. https://doi.org/10.1175/1520-0493(1973)101<0387:DMSOAP>2.3.CO;2

Miller, S. T. K., Keim, B. D., Talbot, R. W. & Mao, H. (2003). Sea breeze: Structure, forecasting and impacts. Reviews of Geophysics, 41(3). https://doi.org/10.1029/2003RG000124

Naor, R., Potchter, O., Shafir, H. & Alpert, P. (2017). An observational study of the summer Mediterranean Sea breeze front penetration into the complex topography of the Jordan Rift Valley. Theor. and Appl. Climatol., 127 (1-2), 275-284. https://doi.org/10.1007/s00704-015-1635-3

National Climatic Data Center (NCEI) (2015). NEXRAD Data Inventory Search |National Centers for Environmental Information. Retrieved from http://www.ncdc.noaa.gov/nexradinv/map.jsp

National Oceanic and Atmospheric Administration (NOAA), Weather and Climate Toolkit. (2015). Retrieved from https://www.ncdc.noaa.gov/wct/

Nieto-Ferreira, R., Hall L. & Rickenbach, T.M. (2013). A climatology of the structure, evolution and propagation of midlatitude cyclones in the Southeastern United States. J. Climate, 26, 8406-8421. https://doi.org/10.1175/JCLI-D-12-00657.1

Nieto-Ferreira, R., Hall, L. & Rickenbach, T. M. (2015). Midlatitude cyclones in the southeastern United States: frequency and structure differences by cyclogenesis region. Int. J. Climatol. https://doi.org/10.1002/joc.4247

North American Regional Reanalysis (2015). Retrieved from http://www.emc.ncep.noaa.gov/mmb/rreanl/narr.bams.Aug19.pdf

Parker, M. D & Ahijevych, D. A. (2007). Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 3707-3727. https://doi.org/10.1175/2007MWR2098.1

Planchon, O., Damato F., Dubreuil V. & Gouery P. (2006). A method of identifying and locating sea-breeze fronts in north-eastern Brazil by remote sensing. Meteorol. Appl. 13, 225-234. https://doi.org/10.1017/S1350482706002283

Ray, C. A. (1995). Detection of summertime convergence zones in central and eastern North Carolina using the WSR-88D Doppler Radar. M.S. thesis, Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, 193 pp. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.].

Savijärvi, H. & Alestalo, M. (1988). The sea breeze over a lake or gulf as the function of the prevailing flow. Beitr. Phys. Atmos, 61(2), 98-104.

Shaw, W. J., Lundquist, J. K. & Schreck, S. J. (2009). Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90(4), 535-538. https://doi.org/10.1175/2008BAMS2729.1

Shepherd, J. M., Grundstein, A. & Mote, T. (2007). Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Letters, 34, L23810, https://doi.org/10.1029/2007GL031694

Simpson, J. E., Mansfield, D. & Milford, J. (1977). Inland penetration of sea-breeze fronts. Q. J. Roy. Met. Soc.,103:435, 47-76. https://doi.org/10.1002/qj.49710343504

Sims, A. P., & Raman, S. (2016). Interaction Between Two Distinct Mesoscale Circulations During Summer in the Coastal Region of Eastern USA, Boundary Layer Meteor., 160(1), 113-132. https://doi.org/10.1007/s10546-015-0125-6

State Climate Office of North Carolina (SCONCa). Retrieved 2017, from http://climate.ncsu.edu/climate/monthlyprecip.html.

State Climate Office of North Carolina (SCONCb). Retrieved 2017, from http://climate.ncsu.edu/climate/ncclimate.html.

Steele, C. J., Dorling, S. R., von Glasow, R. & Bacon, J. (2014). Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q. J. Roy. Met. Soc., 141: 1821-1835. https://doi.org/10.1002/qj.2484

Wallace, J. M. & Hobbs, P. V. (2006). Atmospheric science: An introductory survey. Amsterdam: Elsevier Academic Press.

Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M. & Russell, R. W. (1994). Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmospheric and Oceanic Technology, 11(5), 1184-1206. https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2

Winkler, J.A., Skeeter, B.R. & Yamamoto, P.D. (1988). Seasonal variations in the diurnal characteristics of heavy hourly precipitation across the United States. Mon. Wea. Rev., 116(8), 1641-1658. https://doi.org/10.1175/1520-0493(1988)116<1641:SVITDC>2.0.CO;2

Wyoming Weather (2015). University of Wyoming, College of Engineering, Department of Atmospheric Science. Worldwide Radiosonde Soundings of the Atmosphere. Retrieved from http://weather.uwyo.edu/upperair/sounding.html

Zhong, S. & Takle E. S. (1993). The effects of large-scale winds on the sea-land-breeze circulations in an area of complex coastal heating. J. Appl. Meteorol., 32, 1181-1195. https://doi.org/10.1175/1520-0450(1993)032<1181:TEOLSW>2.0.CO;2

Zhu, M. & Atkinson, B. W. (2004). Observed and modeled climatology of the land-sea breeze circulation over the Persian Gulf. Int. J. Climatol., 24, 883-905. https://doi.org/10.1002/joc.1045




DOI: https://doi.org/10.14198/INGEO2017.68.01





Copyright (c) 2017 Nicholas T. Luchetti, Rosana Nieto Ferreira, Thomas M. Rickenbach, Mark R. Nissenbaum, Joel D. McAuliffe

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.